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Abstract. The objective of this study is to evaluate the effect of biofilm development on the 

surface layer of a mortar. This work aims at understanding the modifications occurred within the 

cementitious matrix such as its composition as its microstructure following the bio-colonization. 

These properties were studied after 360 days of immersion in two immersion media (Artificial 

Seawater (AS) and Natural Seawater (NS)) using ATG/DTG, XRD analyses and SEM 

observations. It was found that the biofilm caused the dissolution of the portlandite deeper than 

when the mortar was not colonized (AS medium). Moreover, a strong carbonation was observed 

in the first millimeters of the matrix. Two polymorphs of calcium carbonate were particularly 

identified. Aragonite is the dominant form present on the surface of the mortar immersed in NS. 

Calcite and magnesian calcite were also observed but after bio-colonization of the mortar. Thus, 

the development and the biological activity of the biofilm seems to modify the properties of the 

mortar and could control the precipitation of calcium carbonates on its surface. 

1. Introduction 

Cementitious materials are bio-receptive in the marine environment [1,2]. Indeed, these substrates are 

immediately covered by a thin layer of biofilm, which constitutes the first phase of bio-colonization. 

The biofilm is composed of a succession of benthic communities (mainly diatoms [3]) that promote the 

second phase of colonization with the attachment of macro-algae and other sessile organisms [3,4]. 

The objective of this study is to study the interaction between a cementitious material and a marine 

biofilm. The substrate used is a mortar. When the latter is immersed in the marine environment, it is 

subjected to different types of physical, chemical [7-10] and biological [11] attacks that can have an 

impact on its matrix. Indeed, the development of a biofilm on the surface of the mortar can lead to its 

bio-deterioration. Hueck, (1965) [12] defined biodeterioration as "any undesirable change in the 

properties of a material caused by the vital activities of organisms". Several studies [13-15] have shown 

that some ions of the cementitious matrix released into the water column can be assimilated by 

microphytobenthos and macroalgae for their metabolism.  

Mesocosm and laboratory studies were conducted to investigate the evolution of the microstructure and 

composition of the surface layer of the mortar once biocolonized after 360 days of immersion. The 

following techniques were used jointly for this work: Thermogravimetric analysis (TGA/TDG), 

Scanning Electron Microscope (SEM) observation and X-ray Diffraction (XRD). 
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2. Materials and Methods  

 

2.1. Experimental Setup 

For this study, mortar samples were made from CEM II/A-LL cement and siliceous alluvial sand (Ø 0/2 

mm). The samples studied (Ø110mm/H50mm and Ø110mm/H110mm) were prepared according to the 

NF EN 196-1 standard and then exposed to a Relative Humidity (RH) of 100% for 24 hours, before 

being demoulded and stored in water for 90 days at room temperature. After 90 days of curing at 100% 

RH, the samples were immersed in natural seawater (NS) (mesocosm at the CREC station in Luc-sur-

Mer, FR). To distinguish the effect of chemical attack of the seawater from the effect of bio-colonisation 

on the mortar, samples were also immersed in the laboratory in artificial seawater (AS) obtained from 

the dissolution of Instant Ocean© salt, Spectrum Brand dosed at 33.3 g.L-1 [16].   

 

2.2. Evolution of the microstructure and composition of the mortar surface layer 

 

2.2.1. Thermogravimetric analysis (TGA/TDG). Thermogravimetric analyses provide information on 

the evolution of the mineralogical composition of the material. These analyses were carried out using 

an STA 449 F5 (Netzch). Tests were carried out over a temperature range of 20°C to 1000°C, with a 

heating rate of 10°C/min and a nitrogen atmosphere of 50 mL/min. The tests were carried out on powder 

samples obtained after sampling the surface layer (0 to 10 mm deep every two millimetres) of the 

reference mortar (after 90 days of curing) and on samples after their immersion (AS and NS medium). 

From the thermogravimetric analyses, it is possible to estimate the amount of portlandite and calcium 

carbonates present in the mortar. 

The amount of initial portlandite is determined from the measurement of the amount of water released 

by mass loss according to the equation (1) :  

𝑚𝑝𝑜𝑟𝑡𝑙𝑎𝑛𝑑𝑖𝑡𝑒 =  
𝑀𝑝𝑜𝑟𝑡𝑙𝑎𝑛𝑑𝑖𝑡𝑒  × 𝑚𝑤𝑎𝑡𝑒𝑟  

𝑀𝑤𝑎𝑡𝑒𝑟

 
(1) 

With mportlandite the mass of portlandite (g), Mportlandite the molar mass of portlandite (73 g.mol- 1), mwater the 

mass of water (g) lost during the temperature rise (between 400 and 600°C) specific to the decomposition 

of the portlandite and Mwater the molar mass of the water (18 g.mol- 1).  

As with portlandite, it is possible to estimate the amount of calcium carbonate present in the material 

using the loss of mass from carbon dioxide according to the equation (2) : 

𝑚𝐶𝑎𝐶𝑂3
=  

𝑀𝐶𝑎𝐶𝑂3
 × 𝑚𝐶𝑂2

 

𝑀𝐶𝑂2

 
(2) 

With 𝑚𝐶𝑎𝐶𝑂3
 mass of CaCO3 (g), 𝑀𝐶𝑎𝐶𝑂3

 the molar mass of CaCO3 (100 g.mol- 1), 𝑚𝐶𝑂2
 the mass of 

carbon dioxide (g) lost during the temperature rise specific to the decomposition of the CaCO3 (between 

600°C and 1000°C) and 𝑀𝐶𝑂2
 the molar mass of CO2 (44 g.mol- 1).  

 

2.2.2. Scanning electron microscopy (SEM). The morphology of the main mineral components of the 

mortar, at the micrometric scale, was analysed using a JEOL 7200 LV Scanning Electron Microscope 

(SEM), an instrument of the CRISMAT laboratory (Caen, France). The samples (Ø110mm/H110mm) 

were fixed with 2.5% glutaraldehyde for a few days in 0.2M sodium cacodylate buffer pH 7.4 in the 

presence of 7% sucrose, then rinsed in this buffer. The samples were then dehydrated by progressive 

alcohol baths and dried under vacuum (200mbar) after two HMDS (hexamethyldisilazane) baths. The 

samples are glued on a SEM pad with a carbon glue tape to evacuate the charges.  

 

2.2.3. X-ray diffraction (XRD). The surface of the samples (Ø110mm/H110mm) was characterised using 

the TFS 4-circle diffractometer (Ecocorail) equipped with a CPS 120 detector and a Cu K wavelength 
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of Cu K  [17]. The diffractometer is calibrated on a NIST LaB6 standard powder (srm 660a). The 

latter was used to calibrate the instrumental contribution [18]. An angle of incidence w=3° and an 

acquisition time of 12 hours were used. The footprint of the beam size on the sample surface remains 

within the 1-2 mm2 during the measurement.  

The identification and quantification of the phase was done by referring to the Crystallography Open 

Database (COD) [19] and by performing a Rietveld refinement operated using MAUD [20]. 

   

 

3. Results and Discussions 

 

3.1. Mortar composition from thermogravimetric analysis (ATG/DTG) 

Initially, the mass percentage of portlandite in the surface layer (from 0 to 10 mm) of the mortar studied 

has an average value of 6.3% (Figure 1a). After immersion, the amount of portlandite decreases only in 

the first two millimetres in the mortar immersed in the AS medium, whereas it continues to dissolve 

deeper in the mortar immersed in the NS medium reaching 4.4% between 6 and 8 mm depth. As a result, 

the microphytobenthos accelerates the dissolution of the portlandite in the cement matrix 

As for the mass percentage of calcium carbonates in the mortar, the average value is 2.3%. Once the 

mortar is immersed in the two media studied, the quantity of calcium carbonate increases only in the 

first two millimetres of depth (Figure 2b). The increase in CaCO3 may be due to the carbonation of the 

portlandite following its dissolution (Figure 2a). This carbonation is greater at the surface of the mortar 

immersed in the AS medium (12.2%) than when it is colonised (6.8%). This difference can be explained 

on the one hand by the decrease in the quantity of Ca2+ ions in the medium following its assimilation by 

the microphytobenthos. On the other hand, the fixation of dissolved CO2 during photosynthesis reduces 

its availability in the water column. The form of the neoformed CaCO3 will be more precisely identified 

after the analysis of the samples by XRD. 
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Figure 1. Mass percentage (%) of the amount of portlandite (a) and the amount of calcium carbonates 

(b) as a function of depth (0 to 10 mm) in the reference mortar (Ref) and the mortar immersed after 360 

days in artificial seawater (AS) and in natural seawater (NS).  

3.2. Scanning Electron Microscopy (SEM) 

Figure 2a show the appearance and texture of the material studied before its immersion. The facies of 

the different phases initially found in the cement paste are difficult to distinguish. However, we can 

clearly observe C-S-H gel. Once immersed in the AS medium, the mortar shows orthorhombic crystals 

on its surface, characteristic of aragonite (Figure 2b) [21]. he precipitation of aragonite is due to the 

strong presence of magnesium ions in the sea water [22]. Changes in the morphology of the neo-formed 

carbonates are observed on the surface of the mortar immersed in natural seawater (NS). Indeed, 

aragonite was found but in the form of cauliflower and another phase which can be similar to calcite 

(Figure 2c et d). Further XRD analysis will allow the specification of the calcium carbonate polymorph 

identified.  

 

   
Figure 2. SEM observations of a mortar: reference (before immersion) (a); immersed after 360 days in 

Artificial Seawater medium (b); in Natural Seawater medium (c) (C-S-H : gel de Calcium-Silicate-

Hydrate ; Ar : Aragonite ; Ca : Calcite). 
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3.3. Scanning Electron Microscopy (SEM) 

Mineralogical analysis by X-ray diffraction (XRD) was carried out in order to compare the nature of the 

crystallised mineral phases present on the surface of the non-immersed mortar (reference) and immersed 

in the two media studied (AS, NS). The mineralogical composition of the surface of the reference sample 

consists of quartz and calcite (Tableau 1). Calcite represents 95.7% of the sample. This result means 

that the reference sample was carbonated before its immersion in the different media studied. This 

carbonation has a positive effect on the kinetics of bio-colonisation since some studies [23,24] have 

shown that it improves the initiation of biofilm on the surface of the cementitious material. 

In AS, a decrease of calcite in favour of aragonite is observed (confirmed by SEM observations (Figure 

2b)). Abiotic factors (high concentration of Mg2+ ion) of the environment can explain the preponderance 

of aragonite.  

In the NS environment, three forms of calcium carbonates were observed. The presence of magnesian 

calcite is explained by the incorporation of Mg2+ ions in the crystal structure of calcite [25]. These results 

show that the development of biofilm on the mortar surface may have caused a change in the crystal 

lattice structure of the calcite. 

 

Table 1. Percentage (%) of crystallised mineral phases on the surface of a reference mortar and after 

360 days of immersion in Artificial Seawater (AS) and Natural Seawater (NS). 

 Reference EA EN 

Halite - 15.3 (+- 0.5) - 

Aragonite - 62.8 38.6 (+- 2.7) 

Calcite 95.7 21.8 (+- 1.9) 30.5 (+- 2.2) 

Calcite Mg - - 28.3 (+- 2.1) 

Quartz 4.23 (+- 0.1) - 2.5 

 

4. Conclusions 

The different techniques applied in this study provide complementary results necessary to understand 

the interactions taking place within the mortar surface layer once the material is colonised.  

The development and biological activity of the biofilm caused an acceleration of the leaching of 

portlandite within the cement matrix. Calcium ions released into the medium can then be assimilated by 

the microphytobenthos.  

Aragonite is the majority form on the surface of mortar immersed in artificial seawater. In natural 

seawater, other forms of calcium carbonates were observed such as calcite and magnesian calcite. The 

biofilm was able to control the precipitation of calcium carbonate on the mortar surface. 
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